歷屆畢業生 | Alumni

周佳穎 (碩士2019)

單牙與雙牙配位基對銅離子拓印複合材料吸附特性的影響

(Effects of Mono-dentate and Bi-dentate Ligands on Adsorption Characteristics of Cu-Ion-Imprinted Polymers)

 

摘要

本研究以雙牙基(3-(2-aminoethylamino)propyl trimethoxysilane, AATPS)和單牙基((3-aminopropyl)triethoxysilane, APTES)為功能性單體製備Cu(II)離子有機-無機複合拓印材料(ionic imprinting hybrid, IIH),研究中藉由分析複合物在不同Cu/氨基比例時的材料特性與對Cu(II)離子吸附能力的影響,探討雙牙基與單牙基在拓印過程中與金屬配位的能力與對材料拓印程度的影響,並藉由對不同離子吸附能力的比較,釐清離子拓印材料選擇性的關鍵。結果顯示當TEOS:MEMO:H2O:Ethanol莫耳比例固定在15:10:102:200時,Cu: AAPTS = 1: 1Cu: APTES= 0.5: 1能使IIH-AAPTSIIH-APTES分別有3.01.20 mg/g的最佳吸附量,且根據等溫吸附實驗,IIH-AAPTSIIH-APTESpH=5時的最高吸附量分別為27.55 17.48 mg/g,兩系統中雖然Cu(II)離子對氨基的比例同為2,但AAPTSCu(II)離子的錯合行為能夠產生較完整的孔洞提供強吸附位置,因此吸附量較高。對Zn(II)Ni(II)Pb(II)、與Hg(II)的吸附選擇性分析中發現,IIH-AAPTSIIH-APTES拓印材料對Cu(II)離子的吸附選擇性係數(k)分別為89.317.5以上,兩者分別在Cu/AAPTS0.5-1.0Cu/APTES0.5時有最高選擇性,吸附能力依序為Cu(II)> Hg(II) > Zn(II) > Ni(II)> Pb (II),選擇性的依據主要為離子半徑與配體及離子間的錯合能力。以上結果可知,相較於單牙基的APTES,雙牙基的AAPTS能與Cu(II)的產生穩定錯合物,因此以此為功能性單體的離子拓印材料在吸附能力和選擇性上有較優異的表現。


 

陳盈彣 (碩士2019)

分子干擾對於拓印高分子吸附與感測能力之影響

(Molecular Interference on Adsorption and Sensing Ability of Imprinted Polymers)

 

摘要

拓印高分子已被證實對標的物具高辨識力與感測靈敏度,然而,當標的物與其他化合物共同存在時,卻可能因為干擾標的物與孔洞結合而影響吸附與感測能力,因此本研究分為兩個階段來釐清結構類似物對分子拓印高分子與光子晶體感測器干擾程度與型態。第一階段本研究選擇結構類似的Bisphenol A (BPA)Bis(2-hydroxyphenyl)methane (2HDPM)phenol為標的物分別製備三種拓印高分子(B-MIPH-MIPP- MIP),並測定拓印高分子於結構類似物干擾下之吸附能力,結果得知MIP可在30分鐘內達吸附平衡,各吸附材均表現良好拓印效果(拓印因子IF=2.91-4.23)與對標的物的吸附選擇力(SF= 2.15-4.21)。根據干擾試驗,結構扭曲不對稱的BPA分子難有良好拓印的孔洞結構,結構類似物容易以競爭方式抑制B-MIPBPA吸附;結構對稱之2HDPM由於拓印孔洞型態完整,干擾影響以分子間π-π作用力而產生的抑制為主;phenol結構小且簡單,吸附時容易因大分子覆蓋P-MIP表面而降低對phenol之吸附能力。第二階段以相同配比合成拓印光子晶體感測器(B-IPCH-IPCP-IPC),並量測感測器在結構類似物間競爭與抑制下的感測能力,相較於MIP粉體,拓印反蛋白石結構可在更短時間(20分鐘)達感測平衡,且對標的物吸附具更高的選擇性因子 (SF>10),分析範圍可廣至0.2-100 mg/L。不同於MIP粉體,結構類似物對IPC分析標的物的干擾以抑制為主,此結果與IPC系統在製備能有孔洞結構完整性有關。另外,不同於BPA2HDPM的干擾,當親水性較高的phenol濃度達40 mg/L以上時,phenol間傾向相互吸引,因而降低其對B-IPCH-IPC感測干擾。


 

Jawo Pateh (碩士2019)

調整雌二醇(E2)拓印複合材之官能基來提升高吸附與辨識能力

(Adjustment of Functional Groups for Estradiol (E2)-Imprinted Hybrids to Exhibit High Adsorption and Recognition Ability)

 

Abstract

In this study, an E2-based imprinted inorganic-organic hybrid, which exhibited high adsorption and recognition capability, was successfully fabricated by using a polymerization process followed by a sol-gel process. While methyl methacrylate (MMA) was used to create a hydrophobic imprinted environment, methacrylic acid (MAA) and styrene were used as the functional monomers to interact with the target (E2) by hydrogen bonding and π-π interaction, respectively. Tetraethyl orthosilicate (TEOS) was used as the precursor for silica source and 3-(methacryloyloxy) propyl trimethoxysilane (MPS) was used as the coupling agent. The MMA-based molecularly imprinted hybrid (MIH) showed the highest E2 adsorption, followed by the styrene-based and the MAA-based MIHs, indicating hydrophobic environmental exhibit higher affinity toward E2. Introduction of styrene and MAA into the poly-MMA chains greatly enhanced the adsorption ability. The optimal molar ratio of E2/styrene/MAA/MMA/TEOS/MPS was 1/1/1/5/5/15, at which the adsorption capacity reached 35.08 mg/g. Relative to the adsorption ability for the estrone, estriol, and Bisphenol A, the MIH showed respectively 1.08, 5.17, 5.9 times higher adsorption ability for E2. After 6 times of adsorption-desorption cycles, the MIHs still exhibit stable adsorptions amount with a small standard deviation of 4%.


 

Nurul Alvia Istiqomah (碩士2019)

涵浸金屬離子對TiO2-ZrO2二元氧化物在氨吸附中的作用

(The Role of Metal Ion Impregnation on TiO2-ZrO2 Binary Oxide in Ammonia Adsorption)

 

Abstract

Four types of transition metal ions, including copper (Cu), nickel (Ni), tungsten (W), and zinc (Zn), were selected to be impregnated on the porous TiO2-ZrO2 (TZ) binary oxide with an impregnation method and the roles of those transition metals in the surface acidity and ammonia adsorption of the oxides were systematically examined and clarified. The TZ and the impregnated powders (TZM, where M means the impregnated ions) maintained the porous structure and high surface areas (174-188 m2/g) up to 600°C. While all the impregnated ions increased the Lewis acidity of the TZ substrate, the Cu and Zn species additionally increased the Bronsted acidity as the result of a structural mismatch between the tetrahedral Cu and Zn species and the octahedral Ti and Zr species. The W and Ni species, which had high coordination numbers, consumed surface OH groups, thus introducing Lewis acidity primarily. The ammonia adsorption capacity was in the order of TZCu> TZZn> TZNi> TZW> TZ powders. The additional OH groups on the Cu and Zn ions were the major contributor to the high ammonia adsorption of the TZCu and TZZn adsorbents. The TZCu powder showed the highest ammonia adsorption capacity of 1.81 mmol/g at the surface Cu/(Ti+Zr) atomic ratio of 6x10-3. Over the critical Cu concentration, cross condensation between the Cu-OH groups decreased the active sites for the adsorption. The adsorption capacity of the TZCu powder decreased by 26.8% after high-temperature desorption as the consequence of the elimination of OH groups from the Cu ions. However, the loss of adsorption sites were able to be recovered by exposing the used adsorbent in the ambient air. The high ammonia adsorption capacity, a wide range of acidity strength, and good structural stability enable the impregnated TZ powder to be a promising adsorbent for ammonia removal in a variety of industries.